
How to Fake a Rational Design Process using the SCR Method
In Proc. Software Engineering for High Assurance Systems (SEHAS 2003),

held in conjunction with ICSE 2003, May 9–10 2003. Portland, Oregon, USA.

Ramesh Bharadwaj
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington DC 20375 USA

ramesh@itd.nrl.navy.mil

Abstract

We explore the idea of faking a rational design process,
a la Parnas and Clements [7], by the application of the ex-
tended SCR Method of Heitmeyer and Bharadwaj. We ar-
gue that the formal artefacts created as a result serve as
the basis for determining the work products associated with
each step of the process, and whose quality assessment is
aided by the application of tools in the SCR Toolset. Fur-
ther, since the products associated with each step have a
consistent formal denotation, the approach opens the possi-
bility of significantly automating many process steps.

1. Introduction

The term “Rational Design Process” was introduced by
Parnas and Clements in [7] to define an ideal process in
which programs are derived from the requirements in the
same way that theorems are derived from axioms in a proof.
However, they argue, it is impossible to find a process in
practice that designs software in a perfectly rational way,
and therefore suggest that we fake such a process, i.e., we
present our system and its associated documents to others
as if we had followed this idealized design process. They
justify the need for this pretense by arguing that: (a) An
understanding of the ideal process provides designers guid-
ance on how to proceed. (b) People will get closer to a
rational design if they try to follow the process. (c) It is a
reasonable basis for specifying a “standard process”. (d) It
is easier to provide metrics on a project if it is compared
with the ideal process. (e) Attempting to follow a standard
process eases a project’s review. Finally, they argue that
management of such a process that is described in terms of
work products becomes easier since we know which work
products are due, and what criteria they must satisfy.

In [1, 3] Heitmeyer and Bharadwaj outline a four
step process for the behavioral specification of software-
intensive embedded systems. Each step in the process re-

sults in the construction of a formal artefact that is amenable
to formal inspection, validation, verification, and consis-
tency checking. In this paper, our tentative proposal is
that we additionally consider two architectural specification
documents. Although these artefacts may differ somewhat
from the products considered by Parnas and Clements in
[7], we argue that the SCR notation, the SCR formal model
[5], and tools associated with the SCR method [2, 4] can
serve as the basis for the construction of the products of a
rational design process. The benefit of this approach is that
many of the desirable properties of the products considered
in [7] are natural outcomes of the application of the SCR
method and tools. We argue therefore that adopting the SCR
method and using the SCR tools leads us closer to the ide-
alized design process because of the separation of concerns
in each step of the process and precise formal criteria upon
which the artefacts, constructed as a result of each step, are
evaluated. What remains to be done is to provide a set of
guidelines suitable for use by developers and precise doc-
umentation of the “SCR Rational Process” itself, along the
lines suggested in [7].

2 Behavioral Specifications

Behavioral specifications of the system and software are
constructed using the notation of SCR. The four steps of the
extended SCR method of [1, 3] are shown in Figure 1.

The first step creates the System Requirements Specifica-
tion (SRS), which describes the required external behavior
of the system in terms of the quantities in the environment
that the system monitors and controls. The structure of the
SRS is dictated by the structure of the system architecture
(see next section) – the SRS may be composed of modules,
each corresponding to an element in the system architec-
tural specification. The second step creates the System De-
sign Specification (SDS), which identifies the input and out-
put variables associated with the sensors and actuators on
each hardware platform of the system. The third step cre-
ates the Software Requirements Specification (SoRS) by ex-

1



input
data
items

{System Req.
Specification

{

{Software Req.
Specification

System Design
Specification

REQ

NAT

D_OUT

Output Device
Interf. Module

D_IN REQ~

SOFTWARE

SYSTEM

output
data
items

sensors actuators

......

Input Device
Interf. Module

Device-Independ..
Module

C
~

M
~

M C

Figure 1. Relationship between the artefacts
of the SCR method.

tending each SRS module with two additional specifications
that (1) relates the input devices to the monitored quantities
of the system and (2) the controlled quantities of the system
to the output devices. The fourth step extends the SRS with
behavior to handle hardware malfunctions such as sensor
and actuator failures, and timing and accuracy constraints.

3 Architectural Specifications

In this paper, we propose that each behavioral specifi-
cation should be accompanied by an associated architec-
tural specification. The notation we propose for archi-
tectural specifications is similar to wiring diagrams used
by Electrical Engineers to specify component interconnec-
tions. The System Architectural Specification documents
the proposed physical configuration of the computer hard-
ware. The Software Architectural Specification documents
the internal structure of the software on each computing
platform. If the underlying software is designed using an
object-oriented method, then a class diagram should prob-
ably be included as an adjunct to the software architectural
specification. The class diagram serves as a surrogate for
documenting the module structure, module interfaces, and
the uses hierarchy as proposed in [7].

4 Software Design and Implementation

The software design document records the major design
decisions of each module (or class) which is intended to
allow a quick review of the design before coding begins
[7]. This includes descriptions of the internal data structures

and the major algorithms used in the implementation. It is
important to note that, with certain restrictions, it is possi-
ble to generate efficient and verified code directly from the
software requirements specification. This has remained a
search for the philosopher’s stone with other specification
notations such as UML. However, with SCR specifications,
it is possible to automate substantial portions of the code
creation process as demonstrated by Heitmeyer et al. [6].

5 Conclusions

We demonstrate that the SCR method is well suited for
faking the ideal development process. In addition to con-
ventional reviews and inspection, specifications in SCR are
amenable to mechanical checking and verification, thereby
considerably easing the burden on the designers and review-
ers. Adopting SCR also promotes seamless transition be-
tween the process steps, since all the artefacts have a con-
sistent underlying formal semantics, based on the SCR for-
mal model[5]. Finally, the behavioral descriptions in SCR
have a precise, mathematical semantics and therefore lend
themselves well to the automatic generation of substantial
portions of the implementation. Parnas and Clements say in
conclusion in [7] that being a rational designer is very hard,
and that even faking that process can be difficult. We posit
that, for the designer, adopting the SCR method and using
the SCR tools will considerably ease this process.

References

[1] R. Bharadwaj and C. Heitmeyer. Hardware/software co-
design and co-validation using the SCR method. In Proceed-
ings of the IEEE International High Level Design Validation
and Test Workshop (HLDVT’99), San Diego, CA, Nov. 1999.

[2] R. Bharadwaj and S. Sims. Salsa: Combining constraint
solvers with BDDs for automatic invariant checking. In Proc.
6

th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’2000), ETAPS
2000, Berlin, Mar. 2000.

[3] C. Heitmeyer and R. Bharadwaj. Applying the SCR require-
ments method to the Light Control Case Study. Journal of
Universal Computer Science, 6(7), 2000.

[4] C. Heitmeyer, J. Kirby, Jr., B. Labaw, and R. Bharadwaj.
SCR*: A toolset for specifying and analyzing software re-
quirements. In Proc. Computer-Aided Verification, 10th An-
nual Conf. (CAV’98), Vancouver, Canada, 1998.

[5] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Auto-
mated consistency checking of requirements specifications.
ACM Transactions on Software Engineering and Methodol-
ogy, 5(3):231–261, April–June 1996.

[6] E. I. Leonard and C. L. Heitmeyer. Program synthesis from
formal requirements specifications using APTS. Higher-
Order and Symbolic Computation, To Appear.

[7] D. L. Parnas and P. C. Clements. A rational design pro-
cess: How and why to fake it. IEEE Trans. Softw. Eng., SE-
12(2):251–257, Feb. 1986.

2


